Algebraic Geometry Lecture 11 – Sheaves

$\mathsf{Joe}\ \mathsf{Grant}^1$

Motivating Example.

Let X be a topological space (for example \mathbb{R}) then look at continuous functions into \mathbb{R} , call this set C(X). So

$$C(X) = \{ f : X \to \mathbb{R} \mid f \text{ is continuous} \}.$$

This object has nice properties:

- C(X) is a ring, with addition and multiplication defined pointwise.
- Given an open subset U of X we can restrict $f \in C(X)$ to $f|_U \in C(U)$ in the obvious way: $f|_U(u) = f(u)$ for all $u \in U$.
- This restriction is transitive, i.e. if we have open sets $U \subset V \subset X$ then $(f|_{x}) = f|_{x}$.

$$(f|_V)\Big|_U = f|_U$$

We generalise these properties to get:

Defⁿ. A presheaf F on a topological space X is a way of assigning a set F(U) to each open set $U \subseteq X$ with maps

$$\operatorname{res}_U^V : F(V) \to F(U)$$

for each pair of open sets $U \subseteq V$, satisfying

•
$$\operatorname{res}_U^U = \operatorname{id}_{F(U)};$$

• $\operatorname{res}_U^V \circ \operatorname{res}_V^W = \operatorname{res}_U^W$ for all open sets $U \subseteq V \subseteq W$.

We refer to the elements of F(U) as the sections of F over U. Elements of F(X) are called global sections.

If F(U) has some extra structure for all open sets $U \subset X$ we name it accordingly. E.g. C from the above example is a presheaf of rings on X because C(U) is a ring for all open U in X and res^V_U are ring homomorphisms.

We now go back to the motivating example C(X) to look for local structure. Suppose $U \subseteq X$ is open and suppose $\{U_i\}_{i \in I}$ is an open cover of U, i.e. the U_i are open for all $i \in I$ and $U \subseteq \bigcup_{i \in I} U_i$. If we know how some $f \in C(U)$ acts on each U_i (i.e. locally) then we can know how it acts on U (i.e. globally). This is not trivial, it relies on the fact that

$$f\big|_{U_i}(x) = f\big|_{U_j}(x)$$

whenever $x \in U_i \cap U_j$. We also have the converse: any collection of functions $\{f_i\}$ defined on an open cover $\{U_i\}$ of U whose elements agree on intersections of U_i

¹Notes typed by Lee Butler based on a lecture given by Joe Grant. Any errors are the responsibility of the typist. Or Hartshorne.

and U_j determines a unique function $f \in C(U)$. This is the local-global interplay that we wish to capture.

Defⁿ. A presheaf F on a topological space X is a *sheaf* if and only if it satisfies the "gluing axiom": given an open cover $\{U_i\}_{i \in I}$ of an open set $U \subseteq X$, whenever we have elements $s_i \in F(U_i)$, if

$$\operatorname{res}_{U_i \cap U_j}^{U_i} s_i = \operatorname{res}_{U_i \cap U_j}^{U_j} s_j \quad \text{for all } i, j \in I,$$

then there exists a unique section $s \in F(U)$ such that $\operatorname{res}_{U_i}^U s = s_i$ for every $i \in I$.

Why is this useful?

Remark: We'll use X for varieties and V for open sets.

Proposition. Let X be a variety over a field $k = \overline{k}$. For each open set $U \in X$ in the Zariski topology let $\mathcal{O}(U)$ be the ring of regular functions from U to k, and for each $V \subseteq U$ let res_V^U be the usual restriction of functions. Then \mathcal{O} is a sheaf of rings on X, called the sheaf of regular functions on X.

Proof. Recall that $f: Y \to k$ is regular at $P \in Y$ if there is an open neighbourhood V containing P with $V \subseteq Y$ and there are polynomials $g, h \in k[x_1, \ldots, x_n]$ such that $h \neq 0$ on V and f = g/h on V. f is regular if f is regular for all $p \in Y$. So clearly $\mathcal{O}(U)$ is a ring and as our restriction map is the usual one, \mathcal{O} is a presheaf of rings on X.

The gluing axiom follows from the definition: if f is regular locally (i.e. for all $P \in U_i$) then f is regular globally (i.e. for all $P \in U$). The existence part is easy.

Now let's see some more sheaves!

Consider <u>A</u> which sends each open set $U \subset X$ to the same abelian group A. This is a presheaf buy it's not a sheaf (exercise). But we can sheafify it!

What is the sheafification of \underline{A} ? If U is the union of n connected open sets then the sheafification of \underline{A} , denoted \underline{A}^+ , is the direct product of n copies of A.

More examples of sheaves:

- Sheaf of differentiable functions as a differentiable manifold.
- Sheaf of solutions to a linear differential equation.

We want to bring local rings into this.

Defⁿ. If f is a presheaf on X and P is a point of X we define the stalk of F at P, F_P , by

$$F_P = \{(U,s) \mid U \text{ is an open neighbourhood of } P, s \in F(U)\} / \sim$$

where $(U, s) \sim (V, t)$ if and only if there is an open neighbourhood W of P with $W \subseteq U \cap V$ and such that $\operatorname{res}_W^U s = \operatorname{res}_W^V t$. We call the elements of the stalk at P the germs of sections of F at P.

Recall the definition of a local ring, then if X is a variety and \mathcal{O} is its sheaf of regular functions then the stalk \mathcal{O}_P at a point P is just the local ring of P on X.